Investigation of optical detection strategies for transabdominal fetal heart rate detection using three-layered tissue model and Monte Carlo simulation
نویسندگان
چکیده
In this paper, the Monte Carlo technique is used to determine the optical detection strategies in three-layered (maternal, amniotic fluid and fetal) tissue model. This model is utilized to estimate the transabdominal optical power and optimum source–detector (S–D) separation. Results based on the launching of 2 million photons with 1 mW optical power showed that the expected optical power output is in the range of 10–6–10–10 W/cm2 depending on S–D separation. Considering the limit of the signal processing methods (such as adaptive noise cancelling) and the use of silicon photodetector, an S–D separation of 4 cm has been selected as a practical compromise between signal level and percentage of optical power (70%) coming from the fetal layer. Based on these findings, transabdominal fetal heart rate detection system using NIR and adaptive filtering can be designed and developed.
منابع مشابه
Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model.
Experimental investigation and optimization of various optical parameters in the design of depth sensitive optical measurements in layered tissues would require a huge amount of time and resources. A computational method to model light transport in layered tissues using Monte Carlo simulations has been developed for decades to reduce the cost incurred during this process. In this work, we emplo...
متن کاملInvestigation and Comparison of Metal Nanoparticles on Dose Enhancement Effect in Radiotherapy Using Monte Carlo Simulation Method
Introduction: The main goal of radiation therapy is destroying the tumor so that the surrounded healthy tissues have received the least amount of radiation at the same time. In recent years, the use of nanoparticles has received much attention due to the increasing effects they can have on the deposited dose into the cancer cells. The aim of this study was to investigate the effects of nanopart...
متن کاملDesign of Light Multi-layered Shields for Use in Diagnostic Radiology and Nuclear Medicine via MCNP5 Monte Carlo Code
Introduction Lead-based shields are the most widely used attenuators in X-ray and gamma ray fields. The heavy weight, toxicity and corrosion of lead have led researchers towards the development of non-lead shields. Materials and Methods The purpose of this study was to design multi-layered shields for protection against X-rays and gamma rays in diagnostic radiology and nuclear medicine. In this...
متن کاملEvaluation of Lung Dose in Esophageal Cancer Radiotherapy Using Monte Carlo Simulation
Background and purpose: Radiation therapy make an important contribution in the control and treatment of cancers. Lungs are the main organs at risk in esophageal cancer radiotherapy. Difference between the dose distribution due to the treatment planning system (TPS) and the patient's body dose is dependent on the calculation of the treatment planning system algorithm, which is more pronounced i...
متن کاملEvaluation of organs at risk dose in the left breast IOERT procedures whit and without shielding disc using monte carlo simulation
Introduction: One of the treatment choices in breast cancer is Intra operative electron beam radiation therapy (IOERT). Due to high dose delivery in this procedure, shielding disk is used to protect organs at risk (OARs). In this study, we evaluate the OARs dose in the breast IOERT using Monte Carlo simulation with and without shielding disk in RANDO phantom. Material and Methods: Simulation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012